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The classical theory of the specific heat of gases, which right at the beginning 
obtained such a brilliant confirmation through Kundt and Warburg’s determin
ation of the specific heat of mercury vapour, has for a long time produced no 
new results. It has, in particular, proved impossible to explain the variation of 
the specific heat with the temperature. It has now, however, become possible 
to give this theory the extension which has for so long been looked forward to, 
and which enables the theory to explain the variability of the specific heat.

A few years ago Einstein succeeded in enunciating a formula for the specific 
heat of solids on the basis of the quantum theory. And this formula has, after 
having been modified by Nernst and Lindemann, proved to apply over a very 
wide temperature range. It therefore seems probable that also for gases the 
correct formula for the specific heat can be obtained by combining the quantum 
theory with the kinetic theory. A short time ago Nernst has also given an outline 
of a formulation of this idea.

The derivation is briefly as follows:
A gas molecule possesses three kinds of energy, the amount of which varies 

with the temperature: the energy of translation, due to its translatory movements, 
the energy of rotation, due to the rotatory movement of the molecule, and the 
energy of oscillation, from the oscillations of the atoms in the molecule.

According to the classical kinetic theory of gases the energy of translation is 
always equal to 3/2 RT per mole, whether the molecule is mono-, di-, tri-, or 
tetra-atomic. As to the energy of rotation conditions are different. The magnitude 
of the energy of rotation may be obtained in the following way: According to 
the laws of classical statistical mechanics the following rule will apply to the kinetic 
energy of a molecule: the content of energy of a molecule is the same for each 
degree of freedom, and as the energy of translation possesses three degrees of 
freedom and is equal to 3/2 RT, the energy of the molecule must be 1¡2 RT per 
degree of freedom. In order to obtain the energy of rotation we therefore only 
have to multiply the number of degrees of freedom of the energy of rotation 
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by x/2 RT. The latter number of degrees of freedom is for a monatomic gas 0, 
for a diatomic gas 2 and for tri- and polyatomic gases 3, because a monatomic 
molecule may be considered a point-mass, a diatomic molecule can possess 
energy of rotation about two axes and a tri- or polyatomic gas may possess energy 
of rotation about all three axes (if it does not happen to be of linear structure).

As regards the energy of oscillation, a monatomic gas molecule cannot possess 
energy of oscillation. In a diatomic molecule the two atoms may oscillate in 
relation to each other. There is thus one degree of freedom which, according 
to the classical theory, corresponds to a kinetic energy of 1¡2 RT per mole, and, 
as an equally large amount of potential energy should be added, a total energy 
of RT. Here the new theories interfere. According to the quantum hypothesis 
only a fraction 9 of the classical oscillation energy is present, i.e. in this case 
RTq. 9 is a function only of the temperature and the frequency of the oscillation 
in question. According to Einstein we have

ßv
T

where ß = 4.86 • 10“11 and v is the frequency (the number of oscillations per 
second). Nemst and Lindemann have found that Einstein’s function does not 
apply to solids at low temperatures while the formula

ß V ß V

agrees closely with the observations.
In the following I shall employ both these functions to find out whether the 

new one is also to be preferred in case of gases.
Both functions of 9 are at the absolute zero equal to nil, and they approach 1 

at higher temperatures. At higher temperatures the energy content thus approaches 
that which is required by the classical theory.

In a triatomic gas molecule the three atoms, which may be denoted A, B, and 
C, can oscillate in pairs, i.e. A and B in relation to each other and likewise B and 
C as well as C and A. We must thus consider three different oscillations, and 
the total energy of oscillation will be: RT tøj + 92 + 93).

Just as a triangle is determined by three elements, the energy of oscillation 
of a triangular molecule has three degrees of freedom. In analogy with this a 
tetra-atomic molecule must possess six oscillations, an n-atomic 3n — 6 oscillations.
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Summary

Number of atoms 
in the molecule

Energy of 
translation Energy of rotation Energy of oscillation

1 3I,RT 0 0
2 3/2RT RT RT<?
3 3lzRT 3I2rt RT (?1 + + <p3)
4 3I2rt 3/2 RT ÄTSgtp

By adding up energy of translation, energy of rotation and energy of oscil
lation the total energy is obtained. When the total energy is divided by the tem
perature we obtain the mean specific heat reckoned from the absolute zero, and 
by differentiating with respect to T, we obtain the true specific heat, in all cases 
at constant volume. Hereby, we have formulated an expression for the specific 
heat of gases.

In connection with the above derivation the following should be observed: 
As shown by Nernst, it also applies to the energy of rotation that at low tempe
ratures only a fraction of the amount calculated according to the classical theory, 
will be present. However, already at temperatures far below 0° C this amount 
has practically been reached. For the purpose of the present investigation we 
need not take this into consideration. Another point neglected is the following: 
Besides the kinetic energy of rotation EKi the molecule must possess potential 
energy of rotation EP, as the atoms are more or less removed from each other 
due to the centrifugal force. This contribution of potential energy of rotation 
will be the smaller the more rigidly the atoms are finked. For a diatomic gas 
molecule, the internal frequency of which is v, it can be calculated that

EP  RT
Ek 4 ~2 V2 Mr2

Here M is the molecular weight and r the radius of the molecule. According 
to this expression the potential energy of rotation may usually be taken to equal 
nil. We have, e.g. for oxygen at ordinary temperature, when we substitute v = 1014, 
M — 32, and r = 10~8,

— = 0.00002

For the purpose of testing the new expressions for the specific heat of gases, 
monatomic gases cannot be used as Boltzmann’s theory remain applicable to 
these gases. We can therefore at once proceed to the polyatomic gases. In the 
case of diatomic gases the specific heat has previously been considered to vary 
linearly with the temperature. However, the values observed are in very good 
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agreement with those calculated from the new exponential formulae, as will be 
seen from tables 1 and 2.

We have for hydrogen and nitrogen correlated the observed values of the specific 
heat with the values (E) calculated from Einstein’s ^-function and with the

Table 1. Specific heat of hydrogen

t Observed value
Calculated

E
X = 3.0[z

Calculated 
N and L 
X — 2.0[x

18° C
c

4.9-5.2 from Cp/cv
c

4.96
c

4.96
Cm(0°, t°) cM(0°, t°) r°)

1413 5.34 5.37 5.37
1592 5.42 5.45 5.44
1835 5.52 > Pier 5.54 5.52
2017 5.61 5.61 5.59
2250 5.72 5.69 5.67

Table 2. Specific heat of nitrogen

t Observed value
Calculated 

E
X = 3.6(2

Calculated 
N and L 

X = 2.59(z

18° C
c

4.84 from Cp/c^
c

4.96
c

4.96
cw(0°, r°) cw(0°, t°) cw(0°, t°)

200 4.73 4.97 5.00
630 4.91 Holborn 5.10 5.19

1000 5.25 Hennig 5.31 5.38
1347 5.31 5.50 5.53
2000 5.78 1 Pier 5.78 5.78
2500 5.93 5.93 5.93

values (N and L) calculated from Nemst and Lindemann’s o-function. c denotes 
the true specific heat at constant volume and cm(0°, ¿°) the mean specific heat 
at constant volume between 0° C and f C.

When the atoms are electrically charged, we must, according to Einstein, 
expect to find bands in their absorption and emission spectra at wave-lengths 
corresponding to the frequencies of the atomic oscillations. In the tables, I have 
therefore given the wave-lengths X corresponding to the frequencies used for the 
calculation.

Hydrogen and nitrogen have no infrared bands and the /-values which have 



ON THE SPECIFIC HEAT OF GASES 31

been calculated according to thermal methods cannot therefore be checked by 
optical methods. Carbon monoxide and oxygen seem, however, according to explo
sion experiments, to have nearly the same specific heat as nitrogen. Their 
atoms must therefore — as those of nitrogen — oscillate with a frequency cor
responding to À = about 3p. These substances do actually show absorption within 
this range, namely carbon monoxide at 2.4 p and 4.6 p, and oxygen at 3.2 p and 
4.7 p. The oxygen bands are rather weak. The greater the polarity of the mole
cules the more intense the infrared bands seem to be.

Important material for testing the theory is presented by the triatomic gases, 
carbon dioxide and water vapour. In the first place the two like atoms can in 
both gases oscillate in relation to each other. As the forces between these 
atoms are probably weak, the oscillations will most likely be slow. Secondly, 
the two oxygen atoms in carbon dioxide can oscillate in relation to the carbon 
atom and the two hydrogen atoms in water vapour can oscillate in relation to 
the oxygen atom. We must therefore in these cases expect one slow and two 
more rapid oscillations, and, considering the uniformity of the valences, the two 
rapid oscillations are probably identical.

Table 3. Specific heat of carbon dioxide

t Observed value

Calculated 
E

X, = 14.7p 
X3 — X3 
= 6.2p

Calculated 
N and L 
X, = 8.1p 

X3 = X3 
= 5.Op

Calculated 
N and L

X, = 14.7p
X2 = 4.3p
X3 = 2.7p

18° C
c

7.09 from cp/cv
c

6.87
c

6.85
c

7.24

cm(0°, t°) Gn(0°, r°) r°) Cm(0°, r°)
200 7.48 1 7.44 7.44 7.67
630 8.60 Holborn 8.66 8.67 8.47

1000 9.33 Hennig 9.34 9.35 9.00
1364 9.84 9.87 9.80 9.40
1611 9.98 10.07 10.03 9.62
1839 10.28 Pier 10.23 10.21 9.81
2210 10.47 10.45 10.43 10.04

From table 3, columns 3 and 4 we may see the good agreement obtained in 
the case of carbon dioxide under these conditions, both according to Einstein’s 
cp-function and according to Nernst and Lindemann’s more recent o-function. 
As the absorption spectrum of carbon dioxide consists of three bands at 14.7p, 
4.3 p, and 2.7 p, while the thermally calculated values are 14.7 p and 6.2 p, re
spectively 8.1 p and 5.0 p, it may be seen that the orders of magnitude of the 
optically and thermally determined frequencies agree. The last column in table 3, 
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which gives the specific heats calculated according to Nernst and Lindemann’s 
o-function from the three optical oscillations, shows that the deviations in the 
X-values are insignificant to the calculations of the specific heats. As will be seen, 
we can calculate the specific heat of carbon dioxide from optical measurements with 
an accuracy of a few per cent. When calculating on the basis of the original Einstein 
^-function, the deviation is considerably greater.

The applicability of the new theories to water vapour will appear from table 4. 
In this case a comparison between optically and thermally determined values of

Table 4. Specific heat of water vapour

t Observed value
Calculated 

E
Xr = 5.5[x

X2 = X, = 2.6(x

Calculated
N and L

Xj = X2 = X3 = 2.4[x

c c c
50° C 5.96 i 6.04 5.98

270 6.40 > Nernst-Levy 6.35 6.32
450 6.80 J 6.78 6.80

Cm(110°,i) cw(110°,r) cOT(110% r)
620 6.51 1 TT „ 6.59 6.60

1000 6.94 H°lborn 7.13 7.17
1327 7.40 j Hennig 7.53 7.58

cm(P°> r) j t)
1727 7.96 | 7.89 7.94
2027 8.72 } Pier 8.21 8.27
2327 9.68 J 8.49 8.53

À cannot, however, be performed, because water vapour has a complicated infra
red spectrum with bands throughout the range from 1 p. to 20 jx. It is my opinion 
that this unexpectedly complicated spectrum is caused by the presence of double
molecules of water. At any rate water vapour has bands within the ranges where 
they should be expected. A thorough investigation of the spectrum of water 
vapour at different temperatures and pressures would be of great interest, as the 
bands originating from the simple H2O-molecule must become more and more 
distinctive with decreasing pressure and increasing temperature.

Measurements have also been performed for a tetra-atomic gas — namely 
ammonia. Among the six oscillations which its molecule, according to theory, 
must possess I have assumed the five rapid ones to have the same frequency. 
This assumption is sufficient to obtain agreement with the observations, as shown 
in table 5.
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Table 5. Specific heat of ammonia

t Observed value

Calculated 
E

X, = 13.0p.
X2 — X3 = X4 — X5 

= X6 = 3.32pt

Calculated 
N and L 
X, = 8.9p

X2 = X3 = X4 = X5
— X6 - 2.lu

18° C 6.61 6.61 6.62
112 7.09 __ 6.98 6.91
466 o . Nernst8.4 8.5 8.6
580 9.2 9.2 9.2

The /.-values found by the thermal methods are 13 pi and 3.3 pt., respectively 
8.9 pi and 2.1 pi. The infrared spectrum of ammonia extends from 14 pi to 3 pi and 
comprises about 20 lines and bands. They are likewise within the range in which 
they should be according to the thermal measurements.

I have now mentioned all the gases for which detailed investigations are avail
able. For other gases only incomplete thermal and optical measurements are 
available. We are especially short of absorption measurements in the outermost 
infrared spectrum. There do not seem, however, to be any cases in which the 
available measurements contradict the theory.

We may establish as a result of the investigation that the available observations 
confirm the interdependence between specific heat and spectrum which the 
quantum theory requires. In most cases the observations are equally well repro
duced by means of Einstein’s and Nernst-Lindemann’s cp-function. But just 
in the case where the data are best, i. e. in the case of carbon dioxide, the new 
formula by Nernst and Lindemann proves its superiority.
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